finished the rework of vmmap.c etc.

This commit is contained in:
Eric J. Bowersox 2013-04-23 01:49:58 -06:00
parent 4c6b86ffbd
commit b23fd6b6e5
7 changed files with 644 additions and 232 deletions

View File

@ -39,22 +39,52 @@
#include <comrogue/types.h>
#include <comrogue/compiler_macros.h>
#include <comrogue/internals/mmu.h>
#include <comrogue/internals/rbtree.h>
#include <comrogue/internals/startup.h>
/*------------------------------------------
* The COMROGUE memory management subsystem
*------------------------------------------
*/
/* Nodes in the page table tree. */
typedef struct tagPAGENODE {
RBTREENODE rbtn; /* RBT node containing physical address as key */
PPAGETAB ppt; /* pointer to page table */
} PAGENODE, *PPAGENODE;
/* Virtual memory context. */
typedef struct tagVMCTXT {
PTTB pTTB; /* pointer to the TTB */
PTTBAUX pTTBAux; /* pointer to the TTB auxiliary data */
UINT32 uiMaxIndex; /* max index into the above tables */
RBTREE rbtPageTables; /* tree containing page tables this context owns */
} VMCTXT, *PVMCTXT;
CDECL_BEGIN
/* Low-level maintenance functions */
extern void _MmFlushCacheForPage(KERNADDR vmaPage, BOOL bWriteback);
extern void _MmFlushCacheForSection(KERNADDR vmaSection, BOOL bWriteback);
extern void _MmFlushTLBForPage(KERNADDR vmaPage);
extern void _MmFlushTLBForPageAndContext(KERNADDR vmaPage, UINT32 uiASID);
extern void _MmFlushTLBForSection(KERNADDR vmaSection);
extern void _MmFlushTLBForSectionAndContext(KERNADDR vmaSection, UINT32 uiASID);
extern PTTB _MmGetTTB0(void);
extern void _MmSetTTB0(PTTB pTTB);
/* Kernel address space functions */
extern KERNADDR _MmAllocKernelAddr(UINT32 cpgNeeded);
extern void _MmFreeKernelAddr(KERNADDR kaBase, UINT32 cpgToFree);
/* Page mapping functions */
extern PHYSADDR MmGetPhysAddr(PTTB pTTB, KERNADDR vma);
extern HRESULT MmDemapPages(PTTB pTTB, PTTBAUX pTTBAux, KERNADDR vmaBase, UINT32 cpg);
extern HRESULT MmMapPages(PTTB pTTB, PTTBAUX pTTBAux, PHYSADDR paBase, KERNADDR vmaBase, UINT32 cpg,
extern PHYSADDR MmGetPhysAddr(PVMCTXT pvmctxt, KERNADDR vma);
extern HRESULT MmDemapPages(PVMCTXT pvmctxt, KERNADDR vmaBase, UINT32 cpg);
extern HRESULT MmMapPages(PVMCTXT pvmctxt, PHYSADDR paBase, KERNADDR vmaBase, UINT32 cpg,
UINT32 uiTableFlags, UINT32 uiPageFlags, UINT32 uiAuxFlags);
extern HRESULT MmMapKernelPages(PTTB pTTB, PTTBAUX pTTBAux, PHYSADDR paBase, UINT32 cpg, UINT32 uiTableFlags,
extern HRESULT MmMapKernelPages(PHYSADDR paBase, UINT32 cpg, UINT32 uiTableFlags,
UINT32 uiPageFlags, UINT32 uiAuxFlags, PKERNADDR pvmaLocation);
extern HRESULT MmDemapKernelPages(PTTB pTTB, PTTBAUX pTTBAux, KERNADDR vmaBase, UINT32 cpg);
extern HRESULT MmDemapKernelPages(KERNADDR vmaBase, UINT32 cpg);
/* Initialization functions only */
extern void _MmInit(PSTARTUP_INFO pstartup);

View File

@ -103,6 +103,7 @@
/* TTB auxiliary descriptor bits */
#define TTBAUX_SACRED 0x00000001 /* sacred entry, do not deallocate */
#define TTBAUX_UNWRITEABLE 0x00000002 /* entry unwriteable */
/* Small page table entry bits */
#define PGTBLSM_XN 0x00000001 /* Execute-Never */
@ -131,20 +132,21 @@
/* Page auxiliary descriptor bits */
#define PGAUX_SACRED 0x00000001 /* sacred entry, do not deallocate */
#define PGAUX_UNWRITEABLE 0x00000002 /* entry unwriteable */
/* Combinations of flags we use regularly. */
#define TTBFLAGS_LIB_CODE TTBPGTBL_ALWAYS
#define PGTBLFLAGS_LIB_CODE (PGTBLSM_ALWAYS | PGTBLSM_B | PGTBLSM_C | PGTBLSM_AP10)
#define PGAUXFLAGS_LIB_CODE PGAUX_SACRED
#define PGAUXFLAGS_LIB_CODE (PGAUX_SACRED | PGAUX_UNWRITEABLE)
#define TTBFLAGS_KERNEL_CODE TTBPGTBL_ALWAYS
#define PGTBLFLAGS_KERNEL_CODE (PGTBLSM_ALWAYS | PGTBLSM_B | PGTBLSM_C | PGTBLSM_AP01)
#define PGAUXFLAGS_KERNEL_CODE PGAUX_SACRED
#define PGAUXFLAGS_KERNEL_CODE (PGAUX_SACRED | PGAUX_UNWRITEABLE)
#define TTBFLAGS_KERNEL_DATA TTBPGTBL_ALWAYS
#define PGTBLFLAGS_KERNEL_DATA (PGTBLSM_XN | PGTBLSM_ALWAYS | PGTBLSM_B | PGTBLSM_C | PGTBLSM_AP01)
#define PGAUXFLAGS_KERNEL_DATA PGAUX_SACRED
#define TTBFLAGS_INIT_CODE TTBFLAGS_KERNEL_CODE
#define PGTBLFLAGS_INIT_CODE PGTBLFLAGS_KERNEL_CODE
#define PGAUXFLAGS_INIT_CODE 0
#define PGAUXFLAGS_INIT_CODE PGAUX_UNWRITEABLE
#define TTBFLAGS_INIT_DATA TTBFLAGS_KERNEL_DATA
#define PGTBLFLAGS_INIT_DATA PGTBLFLAGS_KERNEL_DATA
#define PGAUXFLAGS_INIT_DATA 0
@ -207,7 +209,8 @@ typedef union tagTTB {
/* TTB auxiliary descriptor */
typedef struct tagTTBAUXENTRY {
unsigned sacred : 1; /* sacred TTB - should never be deallocated */
unsigned reserved : 31; /* reserved for future allocation */
unsigned unwriteable : 1; /* entry is not writeable */
unsigned reserved : 30; /* reserved for future allocation */
} TTBAUXENTRY, *PTTBAUXENTRY;
/* TTB auxiliary table entry */
@ -246,7 +249,8 @@ typedef union tagPGTBL {
/* page auxiliary descriptor */
typedef struct tagPGAUXENTRY {
unsigned sacred : 1; /* sacred page - should never be deallocated */
unsigned reserved : 31; /* reserved for future allocation */
unsigned unwriteable : 1; /* entry is not writeable */
unsigned reserved : 30; /* reserved for future allocation */
} PGAUXENTRY, *PPGAUXENTRY;
/* page table auxiliary entry */
@ -264,6 +268,9 @@ typedef struct tagPAGETAB {
/* VMA index macros */
#define mmVMA2TTBIndex(vma) (((vma) >> (SYS_PAGE_BITS + SYS_PGTBL_BITS)) & ((1 << SYS_TTB_BITS) - 1))
#define mmVMA2PGTBLIndex(vma) (((vma) >> SYS_PAGE_BITS) & ((1 << SYS_PGTBL_BITS) - 1))
#define mmIndices2VMA3(ttb, pgtbl, ofs) \
((((ttb) & ((1 << SYS_TTB_BITS) - 1)) << (SYS_PAGE_BITS + SYS_PGTBL_BITS)) | \
(((pgtbl) & ((1 << SYS_PGTBL_BITS) - 1)) << SYS_PAGE_BITS) | ((ofs) & (SYS_PAGE_SIZE - 1)))
/*
* Data structures for the Master Page Database.

View File

@ -82,9 +82,10 @@ typedef struct tagRBTREE {
PRBTREENODE ptnRoot; /* pointer to root of tree */
} RBTREE, *PRBTREE;
/* Macro to initialize the tree head. */
/* Tree macros. */
#define rbtInitTree(ptree, pfnCompare) \
do { (ptree)->pfnTreeCompare = (pfnCompare); (ptree)->ptnRoot = NULL; } while (0)
#define rbtIsEmpty(ptree) MAKEBOOL(!((ptree)->ptnRoot))
/* Type of function used by RbtWalk. */
typedef BOOL (*PFNRBTWALK)(PRBTREE, PRBTREENODE, PVOID);

View File

@ -104,5 +104,6 @@
#define MEMMGR_E_ENDTTB SCODE_CAST(0x86010004) /* tried to "walk off" end of TTB */
#define MEMMGR_E_NOSACRED SCODE_CAST(0x86010005) /* tried to demap a "sacred" entry */
#define MEMMGR_E_NOKERNSPC SCODE_CAST(0x86010006) /* no kernel space */
#define MEMMGR_E_RECURSED SCODE_CAST(0x86010007) /* tried to recurse into page allocation */
#endif /* __SCODE_H_INCLUDED */

View File

@ -95,7 +95,7 @@ SEG_INIT_CODE static UINT32 make_section_flags(UINT32 uiTableFlags, UINT32 uiPag
*/
SEG_INIT_CODE static UINT32 make_section_aux_flags(UINT32 uiPageAuxFlags)
{
register UINT32 rc = uiPageAuxFlags & (PGAUX_SACRED);
register UINT32 rc = uiPageAuxFlags & (PGAUX_SACRED|PGAUX_UNWRITEABLE);
/* TODO if we define any other flags */
return rc;
}

View File

@ -29,6 +29,9 @@
*
* "Raspberry Pi" is a trademark of the Raspberry Pi Foundation.
*/
#include <comrogue/internals/asm-macros.h>
#include <comrogue/internals/mmu.h>
.section ".text"
/*------------------------
@ -94,3 +97,154 @@ llIODelay:
pop {lr}
.delayreturn:
bx lr
/*
* Flushes the system cache of all data on a page. Optionally writes back writeable data before flushing.
*
* Parameters:
* - vmaPage = The page to be invalidated.
* - bWriteback = TRUE to write back before invalidating, FALSE to not do so.
*
* Returns:
* Nothing.
*/
.globl _MmFlushCacheForPage
_MmFlushCacheForPage:
mov r2, # SYS_PAGE_SIZE
sub r2, r2, #1
orr ip, r0, r2 /* expand so that [r0, ip] is the range to invalidate */
bic r0, r0, r2
tst r1, r1 /* is this a writeable page? */
mcrrne p15, 0, ip, r0, c14 /* yes, clean and invalidate */
mcrreq p15, 0, ip, r0, c6 /* no, just invalidate */
mcrr p15, 0, ip, r0, c5 /* either way, invalidate instruction cache */
bx lr
/*
* Flushes the system cache of all data in a section. Optionally writes back writeable data before flushing.
*
* Parameters:
* - vmaSection = The section to be invalidated.
* - bWriteback = TRUE to write back before invalidating, FALSE to not do so.
*
* Returns:
* Nothing.
*/
.globl _MmFlushCacheForSection
_MmFlushCacheForSection:
mov r2, # SYS_SEC_SIZE
sub r2, r2, #1
bic r0, r0, r2 /* expand so that [r0, ip] is the range to invalidate */
orr ip, r0, r2
tst r1, r1 /* is this a writeable section? */
mcrrne p15, 0, ip, r0, c14 /* yes, clean and invalidate */
mcrreq p15, 0, ip, r0, c6 /* no, just invalidate */
mcrr p15, 0, ip, r0, c5 /* either way, invalidate instruction cache */
bx lr
/*
* Flushes the TLB for this page in the current address-space context.
*
* Parameters:
* - vmaPage = The page to be invalidated.
*
* Returns:
* Nothing.
*/
.globl _MmFlushTLBForPage
/*
* Flushes the TLB for this page in a specified address-space context.
*
* Parameters:
* - vmaPage = The page to be invalidated.
* - uiASID = Address-space identifier.
*
* Returns:
* Nothing.
*/
.globl _MmFlushTLBForPageAndContext
_MmFlushTLBForPage:
mrc p15, 0, r1, c13, c0, 1 /* get current context */
_MmFlushTLBForPageAndContext:
and r1, r1, #0xFF /* get ASID */
mov ip, # SYS_PAGE_SIZE
sub ip, ip, #1
bic r0, r0, ip /* mask off "page" bits */
orr r0, r0, r1 /* add in specified ASID */
mcr p15, 0, r0, c8, c5, 1 /* invalidate TLB by virtual address */
bx lr
/*
* Flushes the TLB for this section in the current address-space context.
*
* Parameters:
* - vmaPage = The section to be invalidated.
*
* Returns:
* Nothing.
*/
.globl _MmFlushTLBForSection
/*
* Flushes the TLB for this section in a specified address-space context.
*
* Parameters:
* - vmaSection = The page to be invalidated.
* - uiASID = Address-space identifier.
*
* Returns:
* Nothing.
*/
.globl _MmFlushTLBForSectionAndContext
_MmFlushTLBForSection:
mrc p15, 0, r1, c13, c0, 1 /* get current context */
_MmFlushTLBForSectionAndContext:
and r1, r1, #0xFF /* get ASID */
mov ip, # SYS_SEC_SIZE
sub ip, ip, #1
and r0, r0, ip /* r0 = first page to invalidate */
orr r0, r0, r1
add ip, r0, # SYS_SEC_SIZE /* ip = last page to invalidate */
.flush1:
mcr p15, 0, r0, c8, c5, 1 /* invalidate TLB by virtual address */
add r0, r0, # SYS_PAGE_SIZE /* next page */
cmp r0, ip /* are we done? */
bxeq lr /* yes, bug out */
b .flush1 /* no, keep going */
/*
* Returns the value of TTB0, the pointer to the process-level TTB.
*
* Parameters:
* None.
*
* Returns:
* A pointer to the process-level TTB.
*/
.globl _MmGetTTB0
_MmGetTTB0:
mrc p15, 0, r0, c2, c0, 0
bx lr
/*
* Sets the value of TTB0, the pointer to the process-level TTB.
*
* Parameters:
* - pTTB = Pointer to the new process-level TTB.
*
* Returns:
* Nothing.
*
* N.B.:
* Only call this from within kernel code, as otherwise the results can be unpredictable.
*/
.globl _MmSetTTB0
_MmSetTTB0:
mov ip, #0
mcr p15, 0, ip, c7, c7, 0 /* clear caches */
mcr p15, 0, ip, c8, c7, 0 /* clear TLB */
instr_barrier
mcr p15, 0, r0, c2, c0, 0 /* set TTB0 */
mrc p15, 0, ip, c0, c0, 0 /* read ID register */
instr_barrier
bx lr

View File

@ -31,8 +31,10 @@
*/
#include <comrogue/types.h>
#include <comrogue/scode.h>
#include <comrogue/str.h>
#include <comrogue/allocator.h>
#include <comrogue/internals/seg.h>
#include <comrogue/internals/layout.h>
#include <comrogue/internals/mmu.h>
#include <comrogue/internals/memmgr.h>
#include <comrogue/internals/rbtree.h>
@ -44,166 +46,139 @@
DECLARE_THIS_FILE
#endif
/* Tree node storing mapping of physical addresses of page table pages to their kernel addresses */
typedef struct tagPGTMAP {
RBTREENODE rbtn; /* tree node structure */
KERNADDR kaPGTPage; /* page table page kernel address */
UINT32 uiRefCount; /* reference count for mapping */
} PGTMAP, *PPGTMAP;
#define NMAPFRAMES 4 /* number of frame mappings */
/*-----------------------------------------------------------------------------------
* Virtual-memory mapping code that is part of the COMROGUE memory management system
*-----------------------------------------------------------------------------------
*/
static PMALLOC g_pMalloc = NULL; /* allocator used */
static PTTB g_pttb1 = NULL; /* pointer to TTB1 */
static PTTBAUX g_pttb1Aux = NULL; /* pointer to TTB1 aux data */
static RBTREE g_rbtPageTables; /* tree mapping page table PAs to KAs */
/* Forward declaration. */
static HRESULT map_pages0(PTTB pTTB, PTTBAUX pTTBAux, PHYSADDR paBase, KERNADDR vmaBase, UINT32 cpg,
UINT32 uiTableFlags, UINT32 uiPageFlags, UINT32 uiAuxFlags);
static VMCTXT g_vmctxtKernel = { /* kernel VM context */
.pTTB = NULL,
.pTTBAux = NULL,
.uiMaxIndex = SYS_TTB1_ENTRIES
};
static RBTREE g_rbtFreePageTables; /* tree containing free page tables */
/*
* Maps a page table's page into kernel memory space where we can examine it.
* Resolves a given page table reference for a TTB entry within a VM context.
*
* Parameters:
* - paPageTable = Physical address of the page table to map.
* - pvmctxt = Pointer to the VM context.
* - pTTBEntry = Pointer to the TTB entry containing the page table reference to resolve.
*
* Returns:
* Pointer to the pagetable in kernel memory, or NULL if we weren't able to map it.
*
* Side effects:
* May modify g_rbtPageTables, and may modify TTB1 if we map a page into memory. May allocate
* memory from g_pMalloc.
* Pointer to the page table, or NULL if the reference could not be resolved.
*/
static PPAGETAB map_pagetable(PHYSADDR paPageTable)
static inline PPAGETAB resolve_pagetab(PVMCTXT pvmctxt, PTTB pTTBEntry)
{
register PHYSADDR paOfPage = paPageTable & ~(SYS_PAGE_SIZE - 1); /* actual page table page's PA */
register PPGTMAP ppgtmap;
ppgtmap = (PPGTMAP)RbtFind(&g_rbtPageTables, (TREEKEY)paOfPage);
if (!ppgtmap)
{
ppgtmap = IMalloc_Alloc(g_pMalloc, sizeof(PGTMAP));
ppgtmap->kaPGTPage = _MmAllocKernelAddr(1);
ASSERT(ppgtmap->kaPGTPage);
if (SUCCEEDED(map_pages0(g_pttb1, g_pttb1Aux, paOfPage, ppgtmap->kaPGTPage, 1, TTBFLAGS_KERNEL_DATA,
PGTBLFLAGS_KERNEL_DATA, PGAUXFLAGS_KERNEL_DATA)))
{
ppgtmap->uiRefCount = 1;
rbtNewNode(&(ppgtmap->rbtn), paOfPage);
RbtInsert(&g_rbtPageTables, (PRBTREENODE)ppgtmap);
}
else
{
_MmFreeKernelAddr(ppgtmap->kaPGTPage, 1);
IMalloc_Free(g_pMalloc, ppgtmap);
return NULL;
}
}
else
ppgtmap->uiRefCount++;
return (PPAGETAB)(ppgtmap->kaPGTPage | (paPageTable & (SYS_PAGE_SIZE - 1)));
}
/* Forward declaration. */
static HRESULT demap_pages0(PTTB pTTB, PTTBAUX pTTBAux, KERNADDR vmaBase, UINT32 cpg, UINT32 uiFlags);
/*
* Demaps a page table's page from kernel memory space.
*
* Parameters:
* - ppgtbl = Pointer to the page table.
*
* Returns:
* Nothing.
*
* Side effects:
* May modify g_rbtPageTables, and may modify TTB1 if we unmap a page from memory. May free
* memory in g_pMalloc.
*/
static void demap_pagetable(PPAGETAB ppgtbl)
{
register PHYSADDR paOfPage;
register PPGTMAP ppgtmap;
paOfPage = MmGetPhysAddr(g_pttb1, ((KERNADDR)ppgtbl) & ~(SYS_PAGE_SIZE - 1));
ppgtmap = (PPGTMAP)RbtFind(&g_rbtPageTables, (TREEKEY)paOfPage);
if (ppgtmap)
{
if (--(ppgtmap->uiRefCount) == 0)
{
RbtDelete(&g_rbtPageTables, (TREEKEY)paOfPage);
demap_pages0(g_pttb1, g_pttb1Aux, ppgtmap->kaPGTPage, 1, 0);
_MmFreeKernelAddr(ppgtmap->kaPGTPage, 1);
IMalloc_Free(g_pMalloc, ppgtmap);
}
}
register PPAGENODE ppgn = (PPAGENODE)RbtFind(&(pvmctxt->rbtPageTables), (TREEKEY)(pTTBEntry->data & TTBPGTBL_BASE));
return ppgn ? ppgn->ppt : NULL;
}
/*
* Resolves a specified TTB to either itself or the global TTB1, depending on whether one was specified
* and on the virtual address to be worked with.
*
* Parameters:
* - pTTB = The specified TTB pointer.
* - vma = The base virtual address we're working with.
*
* Returns:
* The pointer to the selected TTB, which may be the global variable g_pttb1.
*/
static inline PTTB resolve_ttb(PTTB pTTB, KERNADDR vma)
{
if (!pTTB || (vma & 0x80000000))
return g_pttb1; /* if no TTB specified or address is out of range for TTB0, use TTB1 */
return pTTB;
}
/*
* Resolves a specified TTB auxiliary table to either itself or the global TTB1Aux, depending on whether one
* Resolves a specified VM context pointer to either itself or the kernel VM context, depending on whether one
* was specified and on the virtual address to be worked with.
*
* Parameters:
* - pTTBAux = The specified TTB aux table pointer.
* - pvmctxt = The specified VM context pointer.
* - vma = The base virtual address we're working with.
*
* Returns:
* The pointer to the selected TTB aux table, which may be the global variable g_pttb1Aux.
* The pointer to the selected VM context, which may be to g_vmctxtKernel.
*/
static inline PTTBAUX resolve_ttbaux(PTTBAUX pTTBAux, KERNADDR vma)
static inline PVMCTXT resolve_vmctxt(PVMCTXT pvmctxt, KERNADDR vma)
{
if (!pTTBAux || (vma & 0x80000000))
return g_pttb1Aux;
return pTTBAux;
if (!pvmctxt || (vma & VMADDR_TTB_FENCE))
return &g_vmctxtKernel;
return pvmctxt;
}
/*
* Returns the physical address corresponding to a virtual memory address.
*
* Parameters:
* - pTTB = The TTB to resolve the VM address against. If this is NULL or if the address specified
* is outside the TTB0 range, the system TTB is used.
* - pvmctxt = The VM context to resolve the address against.
* - vma = The virtual memory address to resolve.
*
* Returns:
* The physical address corresponding to the virtual memory address, or NULL if the address could
* not be resolved (is not mapped, or page table could not be mapped).
*/
PHYSADDR MmGetPhysAddr(PTTB pTTB, KERNADDR vma)
static PHYSADDR virt_to_phys(PVMCTXT pvmctxt, KERNADDR vma)
{
PTTB pTTBEntry = resolve_ttb(pTTB, vma) + mmVMA2TTBIndex(vma);
PPAGETAB pTab;
PHYSADDR rc;
register PTTB pTTBEntry = pvmctxt->pTTB + mmVMA2TTBIndex(vma); /* TTB entry pointer */
register PPAGETAB pTab; /* page table pointer */
if ((pTTBEntry->data & TTBQUERY_MASK) == TTBQUERY_FAULT)
return NULL; /* we're not allocated */
if (pTTBEntry->data & TTBSEC_ALWAYS)
return (pTTBEntry->data & TTBSEC_BASE) | (vma & ~TTBSEC_BASE); /* resolve section address */
pTab = map_pagetable(pTTBEntry->data & TTBPGTBL_BASE);
pTab = resolve_pagetab(pvmctxt, pTTBEntry);
if (!pTab)
return NULL; /* could not map the page table */
rc = (pTab->pgtbl[mmVMA2PGTBLIndex(vma)].pg.pgaddr << SYS_PAGE_BITS) | (vma & (SYS_PAGE_SIZE - 1));
demap_pagetable(pTab);
return rc;
return (pTab->pgtbl[mmVMA2PGTBLIndex(vma)].pg.pgaddr << SYS_PAGE_BITS) | (vma & (SYS_PAGE_SIZE - 1));
}
/*
* Returns the physical address corresponding to a virtual memory address.
*
* Parameters:
* - pvmctxt = The VM context to resolve the address against. If this is NULL or the address specified
* is above the TTB0 fence, the kernel VM context is used.
* - vma = The virtual memory address to resolve.
*
* Returns:
* The physical address corresponding to the virtual memory address, or NULL if the address could
* not be resolved (is not mapped, or page table could not be mapped).
*/
PHYSADDR MmGetPhysAddr(PVMCTXT pvmctxt, KERNADDR vma)
{
return virt_to_phys(resolve_vmctxt(pvmctxt, vma), vma);
}
/*
* Determines whether or not the specified page table is empty.
*
* Parameters:
* - ppgt = Pointer to the page table.
*
* Returns:
* TRUE if the page table is empty, FALSE otherwise.
*/
static BOOL is_pagetable_empty(PPAGETAB ppgt)
{
register UINT32 i; /* loop counter */
for (i = 0; i < SYS_PGTBL_ENTRIES; i++)
if ((ppgt->pgtbl[i].data & PGQUERY_MASK) != PGQUERY_FAULT)
return FALSE;
return TRUE;
}
/*
* Free a page table by returning it to the free list.
*
* Parameters:
* - pvmctxt = Pointer to the VM context.
* - ppgt = Pointer to the page table to be freed.
*
* Returns:
* Nothing.
*
* Side effects:
* May modify the VM context's page-table tree and g_rbtFreePageTables.
*/
static void free_page_table(PVMCTXT pvmctxt, PPAGETAB ppgt)
{
PHYSADDR pa = virt_to_phys(pvmctxt, (KERNADDR)ppgt);
PPAGENODE ppgn = (PPAGENODE)RbtFind(&(pvmctxt->rbtPageTables), (TREEKEY)pa);
if (ppgn)
{
RbtDelete(&(pvmctxt->rbtPageTables), (TREEKEY)pa);
rbtNewNode(&(ppgn->rbtn), ppgn->rbtn.treekey);
RbtInsert(&g_rbtFreePageTables, (PRBTREENODE)ppgn);
}
}
/* Flags for demapping. */
@ -213,8 +188,9 @@ PHYSADDR MmGetPhysAddr(PTTB pTTB, KERNADDR vma)
* Deallocates page mapping entries within a single current entry in the TTB.
*
* Parameters:
* - pTTBEntry = Pointer to the TTB entry to deallocate in.
* - pTTBAuxEntry = Pointer to the TTB aux table entry to deallocate in.
* - pvmctxt = Pointer to the VM context.
* - vmaStart = The starting VMA of the region to demap.
* - ndxTTB = Index in the TTB that we're manipulating.
* - ndxPage = Starting index in the page table of the first entry to deallocate.
* - cpg = Count of the number of pages to deallocate. Note that this function will not deallocate more
* page mapping entries than remain on the page, as indicated by ndxPage.
@ -228,87 +204,118 @@ PHYSADDR MmGetPhysAddr(PTTB pTTB, KERNADDR vma)
* May modify the TTB entry/aux entry pointed to, and the page table it points to, where applicable. If the
* page table is empty after we finish demapping entries, it may be deallocated.
*/
static HRESULT demap_pages1(PTTB pTTBEntry, PTTBAUX pTTBAuxEntry, UINT32 ndxPage, UINT32 cpg, UINT32 uiFlags)
static HRESULT demap_pages1(PVMCTXT pvmctxt, KERNADDR vmaStart, UINT32 ndxTTB, UINT32 ndxPage, UINT32 cpg,
UINT32 uiFlags)
{
UINT32 cpgCurrent; /* number of pages we're mapping */
PPAGETAB pTab = NULL; /* pointer to current or new page table */
PPAGETAB pTab = NULL; /* pointer to page table */
HRESULT hr; /* return from this function */
register INT32 i; /* loop counter */
/* Figure out how many entries we're going to demap. */
cpgCurrent = SYS_PGTBL_ENTRIES - ndxPage; /* total free slots on page */
if (cpg < cpgCurrent)
cpgCurrent = cpg; /* only map up to max requested */
cpgCurrent = cpg; /* only demap up to max requested */
hr = MAKE_SCODE(SEVERITY_SUCCESS, FACILITY_MEMMGR, cpgCurrent);
if ((pTTBEntry->data & TTBSEC_ALWAYS) && (cpgCurrent == SYS_PGTBL_ENTRIES) && (ndxPage == 0))
if ((pvmctxt->pTTB[ndxTTB].data & TTBSEC_ALWAYS) && (cpgCurrent == SYS_PGTBL_ENTRIES) && (ndxPage == 0))
{ /* we can kill off the whole section */
if (pTTBAuxEntry->aux.sacred && !(uiFlags & DEMAP_NOTHING_SACRED))
if (pvmctxt->pTTBAux[ndxTTB].aux.sacred && !(uiFlags & DEMAP_NOTHING_SACRED))
return MEMMGR_E_NOSACRED; /* can't demap a sacred mapping */
pTTBEntry->data = 0;
pTTBAuxEntry->data = 0;
/* TODO: handle TLB and cache */
if (pvmctxt->pTTB[ndxTTB].sec.c)
_MmFlushCacheForSection(vmaStart, !(pvmctxt->pTTBAux[ndxTTB].aux.unwriteable));
pvmctxt->pTTB[ndxTTB].data = 0;
pvmctxt->pTTBAux[ndxTTB].data = 0;
_MmFlushTLBForSection(vmaStart);
}
else if (pTTBEntry->data & TTBPGTBL_ALWAYS)
else if (pvmctxt->pTTB[ndxTTB].data & TTBPGTBL_ALWAYS)
{
pTab = map_pagetable(pTTBEntry->data & TTBPGTBL_BASE);
pTab = resolve_pagetab(pvmctxt, pvmctxt->pTTB + ndxTTB);
if (!pTab)
return MEMMGR_E_NOPGTBL;
for (i = 0; i<cpgCurrent; i++)
{
if (pTab->pgaux[ndxPage + i].aux.sacred && !(uiFlags & DEMAP_NOTHING_SACRED))
{ /* can't demap a sacred mapping */
hr = MEMMGR_E_NOSACRED;
goto pageError;
}
return MEMMGR_E_NOSACRED; /* can't demap a sacred mapping */
}
for (i = 0; i<cpgCurrent; i++)
{
if (pTab->pgtbl[ndxPage + i].pg.c) /* only flush cache if cacheable */
_MmFlushCacheForPage(vmaStart, !(pTab->pgaux[ndxPage + i].aux.unwriteable));
pTab->pgtbl[ndxPage + i].data = 0;
pTab->pgaux[ndxPage + i].data = 0;
/* TODO: handle TLB and cache */
_MmFlushTLBForPage(vmaStart);
vmaStart += SYS_PAGE_SIZE;
}
if (is_pagetable_empty(pTab))
{ /* The page table is now empty; demap it and put it on our free list. */
pvmctxt->pTTB[ndxTTB].data = 0;
pvmctxt->pTTBAux[ndxTTB].data = 0;
free_page_table(pvmctxt, pTab);
_MmFlushTLBForSection(mmIndices2VMA3(ndxTTB, 0, 0));
}
/* TODO: check to see if page table can be deallocated */
pageError:
demap_pagetable(pTab);
}
return hr;
}
static HRESULT demap_pages0(PTTB pTTB, PTTBAUX pTTBAux, KERNADDR vmaBase, UINT32 cpg, UINT32 uiFlags)
/*
* Deallocates page mapping entries in the specified VM context.
*
* Parameters:
* - pvmctxt = Pointer to the VM context to use.
* - vmaBase = Base VM address of the region to demap.
* - cpg = Count of the number of pages of memory to demap.
* - uiFlags = Flags for operation.
*
* Returns:
* Standard HRESULT success/failure.
*/
static HRESULT demap_pages0(PVMCTXT pvmctxt, KERNADDR vmaBase, UINT32 cpg, UINT32 uiFlags)
{
UINT32 ndxTTBMax = (pTTB == g_pttb1) ? SYS_TTB1_ENTRIES : SYS_TTB0_ENTRIES;
UINT32 ndxTTB = mmVMA2TTBIndex(vmaBase); /* TTB entry index */
UINT32 ndxPage = mmVMA2PGTBLIndex(vmaBase); /* starting page entry index */
UINT32 cpgRemaining = cpg; /* number of pages remaining to demap */
HRESULT hr; /* temporary result */
if ((cpgRemaining > 0) && (ndxPage > 0))
{
/* We are starting in the middle of a VM page. Demap to the end of the VM page. */
hr = demap_pages1(pTTB + ndxTTB, pTTBAux + ndxTTB, ndxPage, cpgRemaining, uiFlags);
{ /* We are starting in the middle of a VM page. Demap to the end of the VM page. */
hr = demap_pages1(pvmctxt, vmaBase, ndxTTB, ndxPage, cpgRemaining, uiFlags);
if (FAILED(hr))
return hr;
cpgRemaining -= SCODE_CODE(hr);
if (++ndxTTB == ndxTTBMax)
if (++ndxTTB == pvmctxt->uiMaxIndex)
return MEMMGR_E_ENDTTB;
vmaBase = mmIndices2VMA3(ndxTTB, 0, 0);
}
while (cpgRemaining > 0)
{
hr = demap_pages1(pTTB + ndxTTB, pTTBAux + ndxTTB, 0, cpgRemaining, uiFlags);
hr = demap_pages1(pvmctxt, vmaBase, ndxTTB, 0, cpgRemaining, uiFlags);
if (FAILED(hr))
return hr;
cpgRemaining -= SCODE_CODE(hr);
if (++ndxTTB == ndxTTBMax)
if (++ndxTTB == pvmctxt->uiMaxIndex)
return MEMMGR_E_ENDTTB;
vmaBase += SYS_SEC_SIZE;
}
return S_OK;
}
HRESULT MmDemapPages(PTTB pTTB, PTTBAUX pTTBAux, KERNADDR vmaBase, UINT32 cpg)
/*
* Deallocates page mapping entries in the specified VM context.
*
* Parameters:
* - pvmctxt = Pointer to the VM context to use. If this is NULL or the vmaBase address specified is
* above the TTB0 fence, the kernel VM context is used.
* - vmaBase = Base VM address of the region to demap.
* - cpg = Count of the number of pages of memory to demap.
*
* Returns:
* Standard HRESULT success/failure.
*/
HRESULT MmDemapPages(PVMCTXT pvmctxt, KERNADDR vmaBase, UINT32 cpg)
{
return demap_pages0(resolve_ttb(pTTB, vmaBase), resolve_ttbaux(pTTBAux, vmaBase), vmaBase, cpg, 0);
return demap_pages0(resolve_vmctxt(pvmctxt, vmaBase), vmaBase, cpg, 0);
}
/*
@ -352,51 +359,155 @@ static UINT32 make_section_flags(UINT32 uiTableFlags, UINT32 uiPageFlags)
*/
static UINT32 make_section_aux_flags(UINT32 uiPageAuxFlags)
{
register UINT32 rc = uiPageAuxFlags & (PGAUX_SACRED);
register UINT32 rc = uiPageAuxFlags & (PGAUX_SACRED|PGAUX_UNWRITEABLE);
/* TODO if we define any other flags */
return rc;
}
static PPAGETAB alloc_page_table(PTTB pttbEntry, PTTBAUX pttbAuxEntry, UINT32 uiTableFlags)
{
PPAGETAB pTab = NULL; /* new page table pointer */
register INT32 i; /* loop counter */
/* Flags for mapping. */
#define MAP_DONT_ALLOC 0x00000001 /* don't try to allocate new page tables */
/* TODO: pull pTab out of our ass somewhere */
if (pTab)
/* Forward declaration. */
static HRESULT map_pages0(PVMCTXT pvmctxt, PHYSADDR paBase, KERNADDR vmaBase, UINT32 cpg, UINT32 uiTableFlags,
UINT32 uiPageFlags, UINT32 uiAuxFlags, UINT32 uiFlags);
/*
* Allocates a new page table and associates it with the given TTB entry.
*
* Parameters:
* - pvmctxt = Pointer to the VM context.
* - pttbEntry = Pointer to the TTB entry. On successful return, this will be updated.
* - pttbAuxEntry = Pointer to the TTB auxiliary table entry. On successful return, this will be updated.
* - uiTableFlags = Flags to apply to the TTB entry.
* - uiFlags = Flags for the mapping operation.
* - pppt = Pointer to variable to receive new page table pointer.
*
* Returns:
* Standard HRESULT success/failure.
*
* Side effects:
* The new page table is erased before it is returned. May modify the VM context's page-table tree and
* g_rbtFreePageTables. May also allocate a new page of memory.
*/
static HRESULT alloc_page_table(PVMCTXT pvmctxt, PTTB pttbEntry, PTTBAUX pttbAuxEntry, UINT32 uiTableFlags,
UINT32 uiFlags, PPAGETAB *pppt)
{
register PPAGENODE ppgn = NULL; /* page node pointer */
PPAGENODE ppgnFree; /* additional pointer for new "free" entry */
HRESULT hr = S_OK; /* return from this function */
PHYSADDR paNewPage = 0; /* physical address of new page */
KERNADDR kaNewPage = 0; /* kernel address of new page */
if (rbtIsEmpty(&g_rbtFreePageTables))
{
for (i=0; i<SYS_PGTBL_ENTRIES; i++)
if (!(uiFlags & MAP_DONT_ALLOC))
{
pTab->pgtbl[i].data = 0; /* blank out the new page table */
pTab->pgaux[i].data = 0;
/* TODO: pull a new page out of our ass and assign its PA to paNewPage */
if (paNewPage)
{ /* allocate kernel addresses to map it into */
kaNewPage = _MmAllocKernelAddr(1);
if (kaNewPage)
{ /* map the new page in */
hr = map_pages0(pvmctxt, paNewPage, kaNewPage, 1,TTBFLAGS_KERNEL_DATA, PGTBLFLAGS_KERNEL_DATA,
PGAUXFLAGS_KERNEL_DATA, MAP_DONT_ALLOC);
if (SUCCEEDED(hr))
{ /* allocate heap memory for two nodes to describe the page tables */
ppgnFree = IMalloc_Alloc(g_pMalloc, sizeof(PAGENODE));
if (ppgnFree)
ppgn = IMalloc_Alloc(g_pMalloc, sizeof(PAGENODE));
if (ppgnFree && ppgn)
{ /* prepare the new nodes and insert them in their respective trees */
rbtNewNode(&(ppgnFree->rbtn), paNewPage + sizeof(PAGETAB));
ppgnFree->ppt = ((PPAGETAB)kaNewPage) + 1;
RbtInsert(&g_rbtFreePageTables, (PRBTREENODE)ppgnFree);
rbtNewNode(&(ppgn->rbtn), paNewPage);
ppgn->ppt = (PPAGETAB)kaNewPage;
RbtInsert(&(pvmctxt->rbtPageTables), (PRBTREENODE)ppgn);
}
/* TODO: use physical address of page here */
pttbEntry->data = MmGetPhysAddr(g_pttb1, (KERNADDR)pTab) | uiTableFlags; /* poke new entry */
else
{ /* could not allocate both, free one if was allocated */
if (ppgnFree)
IMalloc_Free(g_pMalloc, ppgnFree);
hr = E_OUTOFMEMORY;
}
if (FAILED(hr))
demap_pages0(pvmctxt, kaNewPage, 1, 0);
}
if (FAILED(hr))
_MmFreeKernelAddr(kaNewPage, 1);
}
else
hr = MEMMGR_E_NOKERNSPC; /* no kernel space available */
}
else
hr = E_OUTOFMEMORY; /* no memory to allocate new page table */
}
else
hr = MEMMGR_E_RECURSED; /* recursive entry */
}
else
{ /* get the first item out of the free-pages tree and reinsert it into the current VM context */
ppgn = (PPAGENODE)RbtFindMin(&g_rbtFreePageTables);
RbtDelete(&g_rbtFreePageTables, ppgn->rbtn.treekey);
rbtNewNode(&(ppgn->rbtn), ppgn->rbtn.treekey);
RbtInsert(&(pvmctxt->rbtPageTables), (PRBTREENODE)ppgn);
}
if (SUCCEEDED(hr))
{ /* prepare new page table and insert it into the TTB */
StrSetMem(ppgn->ppt, 0, sizeof(PAGETAB));
pttbEntry->data = (PHYSADDR)(ppgn->rbtn.treekey) | uiTableFlags; /* poke new entry */
pttbAuxEntry->data = TTBAUXFLAGS_PAGETABLE;
*pppt = ppgn->ppt;
}
return pTab;
else
*pppt = NULL;
return hr;
}
static HRESULT map_pages1(PTTB pttbEntry, PTTBAUX pttbAuxEntry, PHYSADDR paBase, UINT32 ndxPage, UINT32 cpg,
UINT32 uiTableFlags, UINT32 uiPageFlags, UINT32 uiAuxFlags)
/*
* Maps pages in the specified VM context within a single TTB entry.
*
* Parameters:
* - pvmctxt = Pointer to the VM context.
* - paBase = Base physical address to be mapped.
* - ndxTTB = Index in the TTB that we're manipulating.
* - ndxPage = Starting index in the page table of the first entry to allocate.
* - cpg = Count of the number of pages to allocate. Note that this function will not allocate more
* page mapping entries than remain on the page, as indicated by ndxPage.
* - uiTableFlags = TTB-level flags to use for the page table entry.
* - uiPageFlags = Page-level flags to use for the page table entry.
* - uiAuxFlags = Auxiliary data flags to use for the page table entry.
* - uiFlags = Flags for the mapping operation.
*
* Returns:
* Standard HRESULT success/failure. If the result is successful, the SCODE_CODE of the result will
* indicate the number of pages actually deallocated.
*
* Side effects:
* May modify the TTB entry/aux entry pointed to, and the page table it points to, where applicable. May
* also allocate a new page table, which may modify other data structures.
*/
static HRESULT map_pages1(PVMCTXT pvmctxt, PHYSADDR paBase, UINT32 ndxTTB, UINT32 ndxPage,
UINT32 cpg, UINT32 uiTableFlags, UINT32 uiPageFlags, UINT32 uiAuxFlags, UINT32 uiFlags)
{
UINT32 cpgCurrent; /* number of pages we're mapping */
PPAGETAB pTab = NULL; /* pointer to current or new page table */
HRESULT hr; /* return from this function */
register INT32 i; /* loop counter */
switch (pttbEntry->data & TTBQUERY_MASK)
switch (pvmctxt->pTTB[ndxTTB].data & TTBQUERY_MASK)
{
case TTBQUERY_FAULT: /* not allocated, allocate a new page table for the slot */
pTab = alloc_page_table(pttbEntry, pttbAuxEntry, uiTableFlags);
if (!pTab)
return MEMMGR_E_NOPGTBL;
hr = alloc_page_table(pvmctxt, pvmctxt->pTTB + ndxTTB, pvmctxt->pTTBAux + ndxTTB, uiTableFlags, uiFlags, &pTab);
if (FAILED(hr))
return hr;
break;
case TTBQUERY_PGTBL: /* existing page table */
if ((pttbEntry->data & TTBPGTBL_ALLFLAGS) != uiTableFlags)
if ((pvmctxt->pTTB[ndxTTB].data & TTBPGTBL_ALLFLAGS) != uiTableFlags)
return MEMMGR_E_BADTTBFLG; /* table flags not compatible */
pTab = map_pagetable(pttbEntry->data & TTBPGTBL_BASE);
pTab = resolve_pagetab(pvmctxt, pvmctxt->pTTB + ndxTTB);
if (!pTab)
return MEMMGR_E_NOPGTBL; /* could not map the page table */
break;
@ -404,11 +515,11 @@ static HRESULT map_pages1(PTTB pttbEntry, PTTBAUX pttbAuxEntry, PHYSADDR paBase,
case TTBQUERY_SEC:
case TTBQUERY_PXNSEC:
/* this is a section, make sure its base address covers this mapping and its flags are compatible */
if ((pttbEntry->data & TTBSEC_ALLFLAGS) != make_section_flags(uiTableFlags, uiPageFlags))
if ((pvmctxt->pTTB[ndxTTB].data & TTBSEC_ALLFLAGS) != make_section_flags(uiTableFlags, uiPageFlags))
return MEMMGR_E_BADTTBFLG;
if (pttbAuxEntry->data != make_section_aux_flags(uiAuxFlags))
if (pvmctxt->pTTBAux[ndxTTB].data != make_section_aux_flags(uiAuxFlags))
return MEMMGR_E_BADTTBFLG;
if ((pttbEntry->data & TTBSEC_BASE) != (paBase & TTBSEC_BASE))
if ((pvmctxt->pTTB[ndxTTB].data & TTBSEC_BASE) != (paBase & TTBSEC_BASE))
return MEMMGR_E_COLLIDED;
pTab = NULL;
break;
@ -440,65 +551,81 @@ static HRESULT map_pages1(PTTB pttbEntry, PTTBAUX pttbAuxEntry, PHYSADDR paBase,
}
}
exit:
demap_pagetable(pTab);
return hr;
}
static HRESULT map_pages0(PTTB pTTB, PTTBAUX pTTBAux, PHYSADDR paBase, KERNADDR vmaBase, UINT32 cpg,
UINT32 uiTableFlags, UINT32 uiPageFlags, UINT32 uiAuxFlags)
/*
* Maps pages in the specified VM context.
*
* Parameters:
* - pvmctxt = Pointer to the VM context.
* - paBase = Base physical address to be mapped.
* - vmaBase = Base virtual address to be mapped.
* - cpg = Count of the number of pages to map.
* - uiTableFlags = TTB-level flags to use for the page table entry.
* - uiPageFlags = Page-level flags to use for the page table entry.
* - uiAuxFlags = Auxiliary data flags to use for the page table entry.
* - uiFlags = Flags for the mapping operation.
*
* Returns:
* Standard HRESULT success/failure.
*/
static HRESULT map_pages0(PVMCTXT pvmctxt, PHYSADDR paBase, KERNADDR vmaBase, UINT32 cpg, UINT32 uiTableFlags,
UINT32 uiPageFlags, UINT32 uiAuxFlags, UINT32 uiFlags)
{
UINT32 ndxTTBMax = (pTTB == g_pttb1) ? SYS_TTB1_ENTRIES : SYS_TTB0_ENTRIES;
UINT32 ndxTTB = mmVMA2TTBIndex(vmaBase); /* TTB entry index */
UINT32 ndxPage = mmVMA2PGTBLIndex(vmaBase); /* starting page entry index */
UINT32 cpgRemaining = cpg; /* number of pages remaining to map */
BOOL bCanMapBySection; /* can we map by section? */
UINT32 uiSecFlags = 0; /* section flags */
UINT32 uiSecAuxFlags = 0; /* section auxiliary flags */
HRESULT hr; /* temporary result */
if ((cpgRemaining > 0) && (ndxPage > 0))
{
/* We are starting in the middle of a VM page. Map to the end of the VM page. */
hr = map_pages1(pTTB + ndxTTB, pTTBAux + ndxTTB, paBase, ndxPage, cpgRemaining, uiTableFlags,
uiPageFlags, uiAuxFlags);
hr = map_pages1(pvmctxt, paBase, ndxTTB, ndxPage, cpgRemaining, uiTableFlags, uiPageFlags, uiAuxFlags, uiFlags);
if (FAILED(hr))
return hr;
cpgRemaining -= SCODE_CODE(hr);
paBase += (SCODE_CODE(hr) << SYS_PAGE_BITS);
if (++ndxTTB == ndxTTBMax)
if (++ndxTTB == pvmctxt->uiMaxIndex)
{
hr = MEMMGR_E_ENDTTB;
goto errorExit;
}
}
bCanMapBySection = MAKEBOOL((cpgRemaining >= SYS_PGTBL_ENTRIES) && ((paBase & TTBSEC_BASE) == paBase));
if (bCanMapBySection)
{
uiSecFlags = make_section_flags(uiTableFlags, uiPageFlags);
uiSecAuxFlags = make_section_aux_flags(uiAuxFlags);
}
while (cpgRemaining >= SYS_PGTBL_ENTRIES)
{
/* try to map a whole section's worth at a time */
if ((paBase & TTBSEC_BASE) == paBase)
{
/* paBase is section-aligned now as well, we can use a direct 1Mb section mapping */
switch (pTTB[ndxTTB].data & TTBQUERY_MASK)
{ /* try to map a whole section's worth at a time */
if (bCanMapBySection)
{ /* paBase is section-aligned now as well, we can use a direct 1Mb section mapping */
switch (pvmctxt->pTTB[ndxTTB].data & TTBQUERY_MASK)
{
case TTBQUERY_FAULT: /* unmapped - map the section */
pTTB[ndxTTB].data = paBase | make_section_flags(uiTableFlags, uiPageFlags);
pTTBAux[ndxTTB].data = make_section_aux_flags(uiAuxFlags);
pvmctxt->pTTB[ndxTTB].data = paBase | uiSecFlags;
pvmctxt->pTTBAux[ndxTTB].data = uiSecAuxFlags;
break;
case TTBQUERY_PGTBL: /* collided with a page table */
hr = MEMMGR_E_COLLIDED;
goto errorExit;
case TTBQUERY_PGTBL: /* page table here */
goto pageTableFallback;
case TTBQUERY_SEC: /* test existing section */
case TTBQUERY_PXNSEC:
if ((pTTB[ndxTTB].data & TTBSEC_ALLFLAGS) != make_section_flags(uiTableFlags, uiPageFlags))
if ( ((pvmctxt->pTTB[ndxTTB].data & TTBSEC_ALLFLAGS) != uiSecFlags)
|| (pvmctxt->pTTBAux[ndxTTB].data != uiSecAuxFlags))
{
hr = MEMMGR_E_BADTTBFLG;
goto errorExit;
}
if (pTTBAux[ndxTTB].data != make_section_aux_flags(uiAuxFlags))
{
hr = MEMMGR_E_BADTTBFLG;
goto errorExit;
}
if ((pTTB[ndxTTB].data & TTBSEC_BASE) != paBase)
if ((pvmctxt->pTTB[ndxTTB].data & TTBSEC_BASE) != paBase)
{
hr = MEMMGR_E_COLLIDED;
goto errorExit;
@ -511,14 +638,15 @@ static HRESULT map_pages0(PTTB pTTB, PTTBAUX pTTBAux, PHYSADDR paBase, KERNADDR
else
{
/* just map 256 individual pages */
hr = map_pages1(pTTB + ndxTTB, pTTBAux + ndxTTB, paBase, 0, cpgRemaining, uiTableFlags, uiPageFlags, uiAuxFlags);
pageTableFallback:
hr = map_pages1(pvmctxt, paBase, ndxTTB, 0, cpgRemaining, uiTableFlags, uiPageFlags, uiAuxFlags, uiFlags);
if (FAILED(hr))
goto errorExit;
}
/* adjust base physical address, page count, and TTB index */
paBase += (SCODE_CODE(hr) << SYS_PAGE_BITS);
cpgRemaining -= SCODE_CODE(hr);
if (++ndxTTB == ndxTTBMax)
if (++ndxTTB == pvmctxt->uiMaxIndex)
{
hr = MEMMGR_E_ENDTTB;
goto errorExit;
@ -526,37 +654,65 @@ static HRESULT map_pages0(PTTB pTTB, PTTBAUX pTTBAux, PHYSADDR paBase, KERNADDR
}
if (cpgRemaining > 0)
{
/* map the "tail end" onto the next TTB */
hr = map_pages1(pTTB + ndxTTB, pTTBAux + ndxTTB, paBase, 0, cpgRemaining, uiTableFlags, uiPageFlags, uiAuxFlags);
{ /* map the "tail end" onto the next TTB */
hr = map_pages1(pvmctxt, paBase, ndxTTB, 0, cpgRemaining, uiTableFlags, uiPageFlags, uiAuxFlags, uiFlags);
if (FAILED(hr))
goto errorExit;
}
return S_OK;
errorExit:
/* demap everything we've managed to map thusfar */
demap_pages0(pTTB, pTTBAux, vmaBase, cpg - cpgRemaining, DEMAP_NOTHING_SACRED);
demap_pages0(pvmctxt, vmaBase, cpg - cpgRemaining, DEMAP_NOTHING_SACRED);
return hr;
}
HRESULT MmMapPages(PTTB pTTB, PTTBAUX pTTBAux, PHYSADDR paBase, KERNADDR vmaBase, UINT32 cpg, UINT32 uiTableFlags,
/*
* Maps pages in the specified VM context.
*
* Parameters:
* - pvmctxt = Pointer to the VM context to use. If this is NULL or the vmaBase address specified is
* above the TTB0 fence, the kernel VM context is used.
* - paBase = Base physical address to be mapped.
* - vmaBase = Base virtual address to be mapped.
* - cpg = Count of the number of pages to map.
* - uiTableFlags = TTB-level flags to use for the page table entry.
* - uiPageFlags = Page-level flags to use for the page table entry.
* - uiAuxFlags = Auxiliary data flags to use for the page table entry.
*
* Returns:
* Standard HRESULT success/failure.
*/
HRESULT MmMapPages(PVMCTXT pvmctxt, PHYSADDR paBase, KERNADDR vmaBase, UINT32 cpg, UINT32 uiTableFlags,
UINT32 uiPageFlags, UINT32 uiAuxFlags)
{
return map_pages0(resolve_ttb(pTTB, vmaBase), resolve_ttbaux(pTTBAux, vmaBase), paBase, vmaBase, cpg,
uiTableFlags, uiPageFlags, uiAuxFlags);
return map_pages0(resolve_vmctxt(pvmctxt, vmaBase), paBase, vmaBase, cpg, uiTableFlags, uiPageFlags, uiAuxFlags, 0);
}
HRESULT MmMapKernelPages(PTTB pTTB, PTTBAUX pTTBAux, PHYSADDR paBase, UINT32 cpg, UINT32 uiTableFlags,
/*
* Maps pages into the kernel address space. The mapping is done in the kernel VM context.
*
* Parameters:
* - paBase = Base physical address to be mapped.
* - cpg = Count of the number of pages to map.
* - uiTableFlags = TTB-level flags to use for the page table entry.
* - uiPageFlags = Page-level flags to use for the page table entry.
* - uiAuxFlags = Auxiliary data flags to use for the page table entry.
* - pvmaLocation = Pointer to a variable which will receive the VM address of the mapped pages.
*
* Returns:
* Standard HRESULT success/failure.
*/
HRESULT MmMapKernelPages(PHYSADDR paBase, UINT32 cpg, UINT32 uiTableFlags,
UINT32 uiPageFlags, UINT32 uiAuxFlags, PKERNADDR pvmaLocation)
{
register HRESULT hr;
register HRESULT hr; /* return from this function */
if (!pvmaLocation)
return E_POINTER;
*pvmaLocation = _MmAllocKernelAddr(cpg);
if (!(*pvmaLocation))
return MEMMGR_E_NOKERNSPC;
hr = MmMapPages(pTTB, pTTBAux, paBase, *pvmaLocation, cpg, uiTableFlags, uiPageFlags, uiAuxFlags);
hr = map_pages0(&g_vmctxtKernel, paBase, *pvmaLocation, cpg, uiTableFlags, uiPageFlags, uiAuxFlags, 0);
if (FAILED(hr))
{
_MmFreeKernelAddr(*pvmaLocation, cpg);
@ -565,13 +721,24 @@ HRESULT MmMapKernelPages(PTTB pTTB, PTTBAUX pTTBAux, PHYSADDR paBase, UINT32 cpg
return hr;
}
HRESULT MmDemapKernelPages(PTTB pTTB, PTTBAUX pTTBAux, KERNADDR vmaBase, UINT32 cpg)
/*
* Unmaps pages from the kernel address space and reclaims that address space for later use.
* The mapping is done in the kernel VM context.
*
* Parameters:
* - vmaBase = Base VM address of the region to be unmapped.
* - cpg = Number of pages to be unmapped.
*
* Returns:
* Standard HRESULT success/failure.
*/
HRESULT MmDemapKernelPages(KERNADDR vmaBase, UINT32 cpg)
{
register HRESULT hr;
if ((vmaBase & 0xC0000000) != 0xC0000000)
if ((vmaBase & VMADDR_KERNEL_FENCE) != VMADDR_KERNEL_FENCE)
return E_INVALIDARG;
hr = MmDemapPages(pTTB, pTTBAux, vmaBase, cpg);
hr = demap_pages0(&g_vmctxtKernel, vmaBase, cpg, 0);
if (SUCCEEDED(hr))
_MmFreeKernelAddr(vmaBase, cpg);
return hr;
@ -582,11 +749,63 @@ HRESULT MmDemapKernelPages(PTTB pTTB, PTTBAUX pTTBAux, KERNADDR vmaBase, UINT32
*---------------------
*/
/*
* Initialize the virtual-memory mapping.
*
* Parameters:
* - pstartup = Pointer to the STARTUP_INFO data structure.
* - pmInitHeap = Pointer to the initialization heap's IMalloc interface.
*
* Returns:
* Nothing.
*
* Side effects:
* Sets up the data structures allocated statically in this file.
*/
SEG_INIT_CODE void _MmInitVMMap(PSTARTUP_INFO pstartup, PMALLOC pmInitHeap)
{
PHYSADDR paPageTable; /* PA of current page table */
KERNADDR kaPageTable; /* KA of current page table */
PPAGENODE ppgn; /* pointer to node being allocated & inserted */
register UINT32 i; /* loop counter */
/* Initialize the local variables in this module. */
g_pMalloc = pmInitHeap;
IUnknown_AddRef(g_pMalloc);
g_pttb1 = (PTTB)(pstartup->kaTTB);
g_pttb1Aux = (PTTBAUX)(pstartup->kaTTBAux);
rbtInitTree(&g_rbtPageTables, RbtStdCompareByValue);
g_vmctxtKernel.pTTB = (PTTB)(pstartup->kaTTB);
g_vmctxtKernel.pTTBAux = (PTTBAUX)(pstartup->kaTTBAux);
rbtInitTree(&(g_vmctxtKernel.rbtPageTables), RbtStdCompareByValue);
rbtInitTree(&g_rbtFreePageTables, RbtStdCompareByValue);
/*
* Load all the page tables we know about. They all get mapped in as part of the kernel context, except if
* there's one free on the last page; it gets added to the free list.
*/
paPageTable = pstartup->paFirstPageTable;
for (i = 0; i < pstartup->cpgPageTables; i++)
{ /* map page table into kernel space */
kaPageTable = _MmAllocKernelAddr(1);
ASSERT(kaPageTable);
VERIFY(SUCCEEDED(map_pages0(&g_vmctxtKernel, paPageTable, kaPageTable, 1, TTBFLAGS_KERNEL_DATA,
PGTBLFLAGS_KERNEL_DATA, PGAUXFLAGS_KERNEL_DATA, MAP_DONT_ALLOC)));
/* allocate node for first page table on page */
ppgn = IMalloc_Alloc(g_pMalloc, sizeof(PAGENODE));
ASSERT(ppgn);
rbtNewNode(&(ppgn->rbtn), paPageTable);
ppgn->ppt = (PPAGETAB)kaPageTable;
RbtInsert(&(g_vmctxtKernel.rbtPageTables), (PRBTREENODE)ppgn);
/* allocate node for second page table on page */
ppgn = IMalloc_Alloc(g_pMalloc, sizeof(PAGENODE));
ASSERT(ppgn);
rbtNewNode(&(ppgn->rbtn), paPageTable + sizeof(PAGETAB));
ppgn->ppt = ((PPAGETAB)kaPageTable) + 1;
if ((i == (pstartup->cpgPageTables - 1)) && pstartup->ctblFreeOnLastPage)
RbtInsert(&g_rbtFreePageTables, (PRBTREENODE)ppgn);
else
RbtInsert(&(g_vmctxtKernel.rbtPageTables), (PRBTREENODE)ppgn);
paPageTable += SYS_PAGE_SIZE; /* advance to next page table page */
}
}